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Abstract—In this paper we consider the problem of designing
coding and decoding schemes to estimate the state of a scalar
stable stochastic linear system subject to noisy measurements and
in the presence of a wireless communication channel between
the sensor and the estimator. In particular, we consider a
communication channel which is prone to packet loss and includes
quantization noise due to its limited capacity. We study two
scenarios: the first with channel feedback and the second with
no channel feedback. More specifically, in the first scenario the
transmitter is aware of the quantization noise and the packet loss
history of the channel, while in the second scenario the transmitter
is aware of the quantization noise only. We show that in the first
scenario, the optimal strategy among all possible linear encoders
corresponds to the transmission of the Kalman filter innovation
similarly to the differential pulse-code modulation (DPCM). In
the second scenario, we show that there is a critical packet loss
probability above which it is better to transmit the state rather
than the innovation. We also propose a heuristic strategy based
on the transmission of a convex combination of the state and the
Kalman filter innovation which is shown to provide a performance
close to the one obtained with channel feedback.

Index Terms—Kalman filtering, packet loss, quantization noise,
channel feedback, differential encoding

I. INTRODUCTION

Wireless communication has become ubiquitous and wired
communication systems are increasingly being replaced with
wireless systems thanks to their many advantages such as
smaller installation costs, easier maintenance and fewer cum-
bersome cables. However, wireless communication comes at
the price of lower channel capacity which results in higher
quantization noise, packet losses and delay. This concern
is particularly apparent in industrial applications such as
remote sensing and real-time automation, since a very high
level of reliability is needed in control systems and safety-
critical scenarios. As a consequence, it becomes of paramount
importance to understand the impact of realistic channel mod-
els in the context of estimation and control. So far most of the
works available in the literature have concentrated on stability
and control subject to only one specific limitation of wireless
communication. For example, in [1], [2] the authors addressed
the problem of stabilization of an unstable plant through a
rate-limited erasure channel where no performance index is
considered besides stability. Other researchers have tried to
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tackle the channel limitations by using analog models in order
to avoid the difficulties associated with explicit design of digital
channel encoder/decoder and to optimize some performance
metrics among all possible stabilizing controllers subject to
packet loss [3], [4] or subject to a maximum signal-to-noise
ratio (SNR) [5], [6]. Finally, another well explored approach
is the analysis, under an LQG framework, of control systems
subject to random packet loss, quantization [7], [8], [9], [10]
and possibly delays [11]. All these works have been concerned
with stability in control systems. However, there are many
applications, such as remote sensing and estimation, where
the dynamical system to be controlled is already stable, but
the existing communication and feedback performance can
be substantially improved. In this work we are interested in
exploring the problem of remotely estimating the state of a
stable stochastic scalar linear system over a wireless channel.
In particular, we want to design coding and decoding strategies
that allow good estimation performance in the presence of
packet loss, quantization noise and measurement noise. So far,
mainly packet loss has been considered in the context of remote
estimation [12], [13], although there are recent attempts to
consider both limitations [14], [15], [16], [17]. Note that the
focus in [16], [17] are on deriving minimum data rates for
stabilizability over lossy channels, whereas we focus on the
actual estimation error performance in the presence of quan-
tization (data rate constraints) and packet loss. In particular
we explore two scenarios. In the first scenario the transmitter
has perfect channel feedback, i.e. it is aware of possible packet
losses and therefore it is able to replicate the receiver filter. As
a result, we show that the optimal transmission strategy is to
send the innovation between the best estimate of the state at the
filter and the predicted estimate of the state at the receiver. This
is reminiscent of differential pulse-code modulation (DPCM)
[18] in which a differential signal is sent over a channel with
no packet loss. Differently, in the second scenario, we consider
the case when the transmitter is not aware of the packet
loss history. We propose three strategies: the first named state
forwarding (SF) in which the estimated state is transmitted
over the channel, the second named innovation forwarding (IF),
in which the difference between the state and the estimate that
a receiver would have if no packet loss had occurred is sent; the
third one, named soft innovation forwarding (SIF), transmits a
convex combination of the signals mentioned above and thus
includes SF and IF as special cases. For these three strategies
we compute their performance and observe that in the low
packet loss regime it is better to use strategies that are similar
to the IF, while for high packet loss regime it better to use
strategies that are similar to the SF. Some preliminary results,
which considered the simplified scenario with no measurement
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noise, can be found in [19].

II. CHANNEL MODELING AND PROBLEM FORMULATION

We consider the problem of remotely estimating the state of
a scalar linear stochastic dynamical system:

xt+1 = axt + wt (1)
yt = cxt + vt (2)

where wt ∼ N (0, σ2
w), vt ∼ N (0, σ2

v) are white, uncorrelated
and uncorrelated with the initial condition x0 ∼ N (x̄0, σ

2
0).

More specifically, as graphically depicted in Figure 1, the
analogue measurement yt at the sensor can be pre-processed by
the filter g(·) into the analog signal st before transmission. The
signal is then quantized into a word sqt from a finite alphabet,
which is then coded and transmitted over a digital noisy
channel. At the receiver, the channel decoder either perfectly
decodes the word sqt or detect an erasure which is modeled
by the binary variable γt ∈ {0, 1} ≡ {erased, decoded}. If
correctly decoded, the word sqt is converted into the analog
signal zt, which is then processed by the receiver via the filter
h(·) to provide the state estimate x̂t. The transmission protocol
might be provided with an ACK-based system that notifies the
transmitter whether the packet has been successfully decoded
at the receiver. We refer to this scenario as perfect channel
feedback; if the ACK signal is not available we shall sat that
there is no channel feedback. We now proceed to mathemati-
cally model such system.

In the following we will consider the simplified assumption

c = 1, |a| < 1 (3)

where the first assumption can be used w.l.o.g. since the case
c 6= 1 can be easily obtained via a rescaling of the process
noise variance σ2

w, while the second assumption is necessary
to guarantee that the stochastic signal yt is asymptotically
stationary with bounded variance. The transmitter can send
a signal through a digital noisy erasure channel modeled as
follows

zt = γts
q
t = γt(st + nt)

where γt ∈ {0, 1} represents the erasure event, sqt ∈ R
is the quantized transmitted signal, st ∈ R is the signal
before quantization, and nt is the uncorrelated additive noise
which models the quantization error under a fine quantization
assumption.

Remark 1: The validity of the additive quantization noise
model for high rate uniform scalar quantization has been
rigorously shown in [20] for continuous input densities, and see
also [21] for similar studies. It has been however shown in these
papers as well as many other recent literature such as in [22]
that although in principle only high rate quantization theory
justifies such an additive white quantization noise model, in
practice this model holds as a very good approximation for
moderate rate quantization. If fact, as shown later in via
numerical simulations Section VI, a uniform scalar quantizer
with only 3-4 bits of quantization per sample used to quantize
the signal st provides results that are sufficiently close to the
theoretical values based on additive noise model proposed in
this work. Note that in a wireless local area network (WLAN)
with orders of megabits per second data rates (even when

shared amongst various links), it is not unreasonable to expect
3-4 bits per sample with a sampling rate of say 0.1 MHz
which is likely to be sufficient for most physical dynamical
systems. Thus, this additive white quantization noise model is
also suitable for use in practical implementation of estimation
over lossy wireless links.

The variables satisfy the following assumptions:

P[γt = 0] = ε, nt ∼ N
(

0,
1

Λ
E[s2

t ]

)
where Λ is the signal-to-quantization noise ratio (SQNR) of
the quantizer; {γt} and {nt} are assumed to be independent.
This model for the SQNR noise assumes that the quantizer
is matched to the stationary distribution of the incoming
signal st so as to maintain a constant SQNR value Λ. The
transmitter sends a signal according to its available information
set, i.e. st = gt(Tt) where gt is a measurable function of the
information set Tt which can take the following two forms:

T CFt = {yt, .., y0, st−1, .., s0, nt−1, .., n0, γt−1, .., γ0}
= {yt, .., y0, st−1, .., s0, zt−1, .., z0, γt−1, .., γ0}

T NCFt = {yt, .., y0, st−1, .., s0, nt−1, .., n0}

The first set T CF corresponds to a scenario with perfect
channel feedback where the transmitter knows the sequence
{γt−1, .., γ0}, i.e. whether a packet has been received success-
fully or not, while the second set T NCF has no such informa-
tion. The first scenario is realistic in wireless communication
where the receiver can transmit back a signal with higher power
and therefore very small packet loss probability. Moreover, the
information to be sent back reliably is just an ACK packet. For
convenience of notation and future use we define the symbol
Eγ which denotes expectation taken conditionally on the entire
loss sequence γ. Moreover we define

Zt := {zt, .., z0} Rt := {zt, . . . , z0, γt, . . . γ0}

which correspond to the past history of the received signals.
Then the state estimator at the receiver side based on the
information Rs is given by

x̂rxt|s := E[xt|Rs] = Eγ [xt|Zs] (4)

Under our Gaussian assumption on the initial condition and
noises, hγ(Zt) := x̂rxt|t is a linear function of Zt which depends
on the loss sequence γt, .., γ0. We are interested in analyzing
the performance of the overall system based on the estimation
prediction error variance at the receiver, i.e.

prxt+1|t = E[(xt+1 − x̂rxt+1|t)
2]

where the expectation has to be taken also with respect to the
packet drop process γt besides the noises wt, nt. As a result,
we will assume that the delay necessary to deliver a message
from the transmitter to the receiver is smaller or equal that the
sampling period, i.e. one time-step.

For future use let us also define the measurement history
Yt := {yt, .., y0}, the state estimator at the transmitter side

x̂txt|t := E[xt|Yt] = ax̂txt−1|t−1 + k̂t(yt − ax̂txt−1|t−1) (5)

where k̂t is the optimal filter gain, and the estimator error

x̃txt|t := xt − x̂txt|t (6)
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Fig. 1. Equivalent communication model for remote estimation.

Since the system is asymptotically stable1 the variance
ptxt|t = E[(x̃txt|t)

2] has the property that limt→∞ ptxt|t =

ptx∞, limt→∞ k̂t = k̂ where ptx∞ is the unique non-negative
solution of the following filter Riccati equation and k̂ its
corresponding steady state gain:

ptx∞ = a2ptx∞+σ2
w−

(a2ptx∞+σ2
w)2

a2ptx∞+σ2
w+σ2

v

= σ2
v

a2ptx∞+σ2
w

a2ptx∞+σ2
w+σ2

v

(7)

k̂ =
a2ptx∞+σ2

w

a2ptx∞+σ2
w+σ2

v

(8)

which shows that for σ2
v = 0, then also ptx∞ = 0. In fact, in

this scenario x̂t|t = xt.

III. OPTIMAL ESTIMATION WITH PERFECT CHANNEL
FEEDBACK

We now consider the state estimation problem with perfect
channel feedback, i.e. also the transmitter is aware of the packet
loss sequence incurred across the digital channel. We show that
if we restrict our attention to functions g(T CFt ) and h(Rt)
which are linear in the information sets T CFt and Rt, then the
optimal strategy is to send the state estimate innovation, i.e.
the difference between the current best state estimate at the
transmitter and the current best prediction of the state at the
receiver.

A. Optimal strategy derivation

Our purpose is to find the “optimal” message st to be sent
through a lossy and SQNR limited channel in order to minimize
the state estimation error variance at the receiver, under the
assumption that perfect channel feedback is available. We shall
look for conditionally linear encoders2

st := Lγ (Yt,Zt−1) (9)

where Lγ (Yt,Zt−1) is, conditionally on the packet loss
sequence γt−1, ..., γ0, a linear operator of its arguments
yt, yt−1, .., y0 (the samples to be encoded) and zt−1, .., z0 (the
past received signals). The result of this section is summarized
in the next theorem. The remaining part of the section proves
the result.

Theorem 1: Under the assumption that perfect channel
feedback is available (i.e. that γt−1, ..., γ0 are known also at the

1Note that this is not necessary and milder stabilizability and detectability
conditions are sufficient for the state estimation error variance to be the unique
positive semidefinite and bounded solution of the algebraic Riccati equation
(7).

2We restrict to linear functionals because the stochastic system is condi-
tionally Gaussian given the loss sequence {γt} and, therefore, the optimal
estimator conditionally on {γt} is a linear functional of the observed data.

transmitter side), the optimal linear encoder (9) for the linear
system (1)-(2) is given by:

st := x̂txt|t − x̂
rx
t|t−1 = E[xt|Yt]− Eγ [xt|Zt−1] (10)

Proof: The encoder has to find a linear function of all
available measurements which retains as much information as
possible regarding the state to be estimated. We can define

es := ys − Eγ [ys|Zt−1] (11)

which represents the innovation (i.e. the “new” informa-
tion) in ys which is not already contained in Rt−1 =
{γt−1, .., γ0,Zt−1}. Then we define Et := {et, ..., e0}.

Note that, however, only part of this information is necessary
to estimate xt. As a matter of fact Et can be reduced so as to
retain all and only the relevant information on xt; this reduction
has sometimes been called Sufficient Dimensionality Reduction
(SDR) [23]. Since xt is scalar, the (linear) sufficient statistic
in Et for xt has dimension 1 (which is equal to the dimension
of the projection of xt onto the space spanned by the elements
of Et).

Hence we seek for a signal st =
∑t
i=0 αiet−i, αi ∈ R, so

that the optimal estimation

x̂rxt|t := Eγ [xt|Zt]

has as small (conditional) variance as possible.
Note that the “noise” nt is known at the transmitter side

since the transmitter generates sqt starting from st. Since st =∑t
i=0 αiet−i, and using the fact that both the noise nt and

es are uncorrelated from zs, s < t (see also (11)), also zt is
uncorrelated from zs, s < t. Therefore the estimator x̂rxt|t :=
Eγ [xt|Zt], satisfies:

x̂rxt|t = Eγ [xt|Zt−1] + Eγ [xt|zt] = x̂rxt|t−1 + Eγ [xt|zt]
= x̂rxt|t−1 +

Eγ [xtst]

Eγ [s2t ](1+ 1
Λ )
zt = x̂rxt|t−1 + 1

1+ 1
Λ

zt

(12)
Note now that, defining x̃rxt|t := xt − x̂rxt|t we have

V arγ{x̃rxt|t} = V arγ{x̃rxt|t−1} − V arγ{E[xt|zt]}

where the symbol V arγ denotes the variance conditionally on
the sequence {γt}. Since the choice of st does not affect the
first term on the right hand side, minimizing V ar{x̃rxt|t} is
equivalent to maximizing

V arγ{Eγ [xt|zt]} = γt
(Eγ [xtst])

2

Eγ [s2t ](1+ 1
Λ )

= γt
(Eγ [xts̄t])

2

(1+ 1
Λ )

where s̄t := st√
Eγ [s2t ]

. Hence we are left with maximizing

Eγ [xts̄t], which is obtained choosing αi, i = 0, .., t so that
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st =
∑t
i=0 αiet−i has maximal correlation with xt. This

is achieved when3 st := Eγ [xt|Et] = Eγ [xt|Et,Zt−1] −
Eγ [xt|Zt−1] = Eγ [xt|Yt,Zt−1]−Eγ [xt|Zt−1] = x̂txt|t− x̂

rx
t|t−1.

Hence, the optimal signal to be sent through the SQNR-
limited channel is

st := x̂txt|t − x̂
rx
t|t−1 = E[xt|Yt]− Eγ [xt|Zt−1]

which concludes the proof.
The Kalman filter estimation error x̃txt|t in (6) has some

interesting uncorrelation properties, which will be useful in
the forthcoming analysis, that are summarized in the following
Lemma:

Lemma 1: In the perfect channel feedback scenario, the
Kalman filter estimation error x̃txt|t is conditionally uncorrelated
with respect to both the transmitter and the receiver estimation
error, i.e.

Eγ [x̃txt|tx̂
tx
t|t] = 0, Eγ [x̃txt|tx̂

rx
t|t] = 0

Proof: A well known property of the optimal estimation
error x̃txt|t is that it is uncorrelated to any linear function
of the same data based on which it is constructed, i.e.
E[x̃txt|tL({yh}th=0)] = 0, from which it directly follows that
E[x̃txt|tx̂

tx
t|t] = 0. Conditioned an a specific realization of the

packet loss sequence {γt}, the estimator at the receiver is a
linear function of the received data, i.e. x̂rxt|t = Lγ({zh}th=0).
Since zt = γt(x̂

tx
t|t− x̂

rx
t|t−1 +nt), by linearity we can certainly

write the estimator at the receiver as

x̂rxt|t = L′γ({yh}th=0) + L′′γ({nh}th=0)

where L′γ and L′′γ are linear functions conditionally on the loss
sequence. Since x̃txt|t is uncorrelated with the noise sequence
{nt}, the statement of the first part of the lemma easily follows.

B. Performance analysis

Based on the analysis in the previous subsection, the optimal
linear strategy for remote estimation in the presence of channel
feedback, which is graphically represented as in Fig.2, is
the following: at the transmitter the measurements are first

Fig. 2. Remote estimation scheme with perfect channel feedback

preprocessed by a standard Kalman filter to obtain the best
estimate of the state at the transmitter x̂txt|t (see (5)) as well as
to reconstruct the best prediction at the receiver side x̂rxt|t−1,
see (4).

Once again, based on the previous section, the optimal strat-
egy at the transmitter is to send the innovation st = x̂txt|t−x̂

rx
t|t−1

3The chain of equalities can be obtained recalling that, conditionally on
the loss sequence {γt}, all random variables are jointly Gaussian and, as
such, conditional expectations are linear projections. In addition recall that
conditionally on γ, Et is uncorrelated with Zt given γ and the linear span of
Et,Zt−1 equals that of Yt,Zt−1.

from which it follows that the signal received at the remote
estimator is

zt = γt(x̂
tx
t|t − x̂

rx
t|t−1 + nt) = γt(xt − x̃txt|t − x̂

rx
t|t−1 + nt).

According to the standard MMSE theory for linear systems,
the optimal filter equation must be of the form:

x̂rxt|t−1 = ax̂rxt−1|t−1 (13)
x̂rxt|t = x̂rxt|t−1+kt(zt − ẑt|t−1) (14)

where we used the result from Eqn. (12). The expression of
the optimal Kalman gain kt is given by4:

kt = covγ{xt, zt− ẑt|t−1}V ar−1
γ {zt− ẑt|t−1} =

Λ

Λ + 1
(15)

which is independent of time and of the packet loss sequence.
If we define the estimation error as x̃rxt|h = xt − x̂rxt|h and its
corresponding variance as prxt|h = E[(x̃rxt|h)2] we get

x̃rxt+1|t = a(1− γtkt)x̃rxt|t−1 + wt + γtakt(x̃
tx
t|t − nt)

Note now that, using also Lemma 1, E[n2
t ] = 1

ΛE[(x̃rxt|t−1 −
x̃txt|t)

2] = 1
ΛE[(x̃rxt|t−1)2−2x̃txt|tx̃

rx
t|t−1 +(x̃txt|t)

2)2] = 1
Λ (prxt|t−1−

2ptxt|t−p
tx
t|t) = 1

Λ (prxt|t−1−p
tx
t|t) and E[x̃rxt|t−1x̃

tx
t|t] = E[(x̃txt|t)

2] =

ptxt|t. Using also that kt = Λ
Λ+1 , then the receiver error

(unconditional) variance is given by:

prxt+1|t = a2prxt|t−1 + σ2
w − (1− ε) a

2Λ

1 + Λ
(prxt|t−1 − p

tx
t|t)

Since |a| < 1 the previous linear equation has a steady state
solution given by:

pCF (ε) = lim
t→∞

prxt+1|t =
σ2
w + (1− ε) a

2Λ
Λ+1p

tx
∞

1− a2 1+εΛ
1+Λ

(16)

which represents the steady state predictor error variance.

IV. STATE FORWARDING VS INNOVATION FORWARDING
WITH NO CHANNEL FEEDBACK

In this section we consider the challenging scenario where
no channel feedback is present. In this case the information
set at the transmitter T NCFt does not include the information
set at the receiver Rt, i.e. Rt 6⊂ T NCFt . As consequence, the
transmitter cannot produce a copy of the transmitter estimate
x̂rxt|t−1. The optimal strategy in this case is not obvious and
it is likely to be a non-linear function of the information
sets T NCFt ,Rt. This situation is reminiscent of the loss of
separation principle in control systems where the estimator is
not aware if the control input has been successfully received
by the actuator or not [9].

As a consequence, we explore suboptimal linear strategies
for which is it possible to compute the performance. In
particular, there are two suboptimal naive strategies that can be
proposed. The first strategy, that we refer to as state forwarding
(SF) is to simply transmit the current transmitter best estimate
of the state xt, i.e. st = x̂txt|t.

4The subscript γ reminds that covariances are taken conditionally on {γt}.
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To introduce the second strategy, let us now define the state
predictor at the transmitter side using the quantized signals as
information set, i.e.

x̄txt|t−1 := E[xt|sqt−1, s
q
t−2, ..., s

q
0] (17)

Inspired by the optimal filtering scheme with channel feed-
back, which requires sending the difference between the state
estimator at the transmitter side and the state prediction at the
receiver side, we now define the innovation forwarding (IF)
strategy in which the transmitted signal st is given by the
difference between the state estimator at the transmitter side
and the state predictor computed at the transmitter side as-
suming (incorrectly) that the all the past quantized transmitted
signals sqt = st + nt have reached the receiver, i.e. assuming
γt = 1,∀t. More specifically st = x̂txt|t − x

tx
t|t−1. The rationale

behind this strategy is that in a lossless channel, i.e. if ε = 0,
it provides the optimal strategy as discussed in Section III.
For both transmitter strategies, the receiver will compute the
MMSE estimator, i.e x̂rxt|t = E[xt |Rt]. As just mentioned, in
general x̂rxt|t 6= x̂txt|t and x̂rxt|t 6= xtxt|t These two strategies can
be graphically represented as in Fig 3, where the SF strategy
corresponds to ν = 1 and the IF strategy to ν = 0.

Fig. 3. Remote estimation scheme with no channel feedback

We now state an instrumental lemma which will be useful
later on:

Lemma 2: In the scenario with no channel feedback the
transmitter state estimation errors x̃txt|t is conditionally uncor-
related with x̂txt|t, x

tx
t|t−1 and x̂rxt|t−1, i.e.

Eγ [x̃txt|tx̂
tx
t|t] = 0, Eγ [x̃txt|tx

tx
t|t−1] = 0, Eγ [x̃txt|tx̂

rx
t|t] = 0,∀ν

and x̃
tx

t|t−1 := xt − xtxt|t−1 is conditionally uncorrelated with,
xtxt|t−1 and x̂rxt|t−1, i.e.

Eγ [x̃
tx

t|t−1x
tx
t|t−1] = 0, Eγ [x̃

tx

t|t−1x̂
rx
t|t] = 0,∀ν

Proof: Since the estimator x̃txt|t is not influenced by chan-
nel feedback, the first statement has been proven in Lemma
1.

The other two statements follow easily using the same
arguments as in Lemma 1 since xtxt|t−1 and x̂rxt|t−1 are linear
functions of {yk, k < t} and of {nk, k < t}, which are all
uncorrelated with x̃txt|t and x̃

tx

t|t−1.

A. State forwarding strategy (ν = 1)

In this section, as seen before, we assume that the transmitted
message is a noisy version of the estimated state, i.e. has the
form

sqt = x̂txt|t + nt = xt − x̃txt|t + nt

where
Eγ [n2

t ] = 1
ΛEγ [(x̂txt|t)

2] = 1
Λ (E[x2

t ]− Eγ [(x̃txt|t)
2])

= 1
Λ

(
σ2
w

1−a2 − Eγ [(x̃txt|t)
2])
)

and we assume that xt has reached its steady state distribution.
In fact limt→∞ E[x2

t ] =
σ2
w

1−a2 =: pOL holds for |a| < 1; this
in particular shows that the state forwarding strategy cannot
be used for |a| ≥ 1 since the signal variance and hence
the quantization noise variance would diverge. The message
received at the remote estimator is then

zt = γt(x̂
tx
t|t + nt) = γt(xt − x̃txt|t + nt)

which can be interpreted as a noisy measurement of the filtered
state, where nt is the measurement noise, subject to intermittent
observation. This problem has already been solved in [12] and
the solution is given by the following time-varying Kalman
filter:

x̂rxt|t−1 = ax̂rxt−1|t−1 (18)
x̂rxt|t = x̂rxt|t−1+γtkt(zt − x̂rxt|t−1) (19)

The state estimation error then satisfies the equation

x̃rxt+1|t = a(1− γtkt)x̃rxt|t−1 + wt + γtakt(x̃
tx
t|t − nt)

from which the conditional error covariance
p̂rxt+1|t = a2(1− γtkt)2p̂rxt|t−1 + γ2

t a
2k2
t (E[(x̃txt|t)

2 + Eγ [n2
t ])

+2a2γtkt(1− γtkt)Eγ [x̃txt|tx̃
rx
t|t−1] + σ2

w

where p̂rxt+1|t = Eγ [(x̃rxt+1|t)
2].

Since by Lemma 2 Eγ [x̃txt|tx̃
rx
t|t−1] = ptxt|t and Eγ [n2

t ] =
1
ΛE[(x̂txt|t)

2] = 1
Λ (E[x2

t ] − Eγ [(x̃txt|t)
2]), then the optimal gain

obtained by minimizing the right hand side is given by:

kt =
p̂rxt|t−1 − p

tx
t|t

p̂rxt|t−1 −
Λ+1

Λ ptxt|t +
σ2
w

Λ(1−a2)

.

From which it follows:

p̂rxt+1|t = a2p̂rxt|t−1 + σ2
w − γt

(p̂rxt|t−1−p
tx
t|t)

2

p̂rx
t|t−1

−Λ+1
Λ ptx

t|t+
1
Λp

OL

The optimal estimator could be computationally expensive
since it needs to keep track of the conditional estimation error
covariance p̂rxt|t−1 which is a function of the packet loss history
{γh}t−1

h=0. As done in [24], the previous filter can be replaced
with the following constant gain filter:

xrxt|t−1 = axrxt−1|t−1 (20)
xrxt|t = xrxt|t−1+γtk(zt − xrxt|t−1) (21)

k =
pSF (ε)− ptx∞

(pSF (ε)− ptx∞) + 1
Λ (pOL − ptx∞)

, pSF (ε)>0 (22)

pSF (ε) = a2pSF (ε)+σ2
w−(1−ε) a2(pSF (ε)−ptx∞)2

(pSF (ε)−ptx∞)+ 1
Λ (pOL−ptx∞)

(23)

which has the property that asymptotical its error covariance
is also an upper bound for the steady state error covariance
prxt|t−1 := E[p̂rxt|t−1] of the optimal estimator x̂rxt|t−1, i.e.

lim sup
t→∞

prxt|t−1 ≤ lim
t→∞

E[(xt − xrxt|t−1)2] = pSF (ε)

It has been shown in [24] that the previous inequality is quite
tight, i.e. the performance degradation incurred using a constant
gain rather then the optimal time-varying gain, is small.
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B. Innovation forwarding strategy (ν = 0)

In this section we consider the innovation forwarding scheme

st = x̂txt|t − x
tx
t|t−1

where xtxt|t−1 = E[xt | sqt−1, . . . , s
q
0] and sqt = st + nt. The

MMSE estimator at the receiver x̂rxt+1|t = Eγ [xt+1 | Zt] is,
conditionally on {γt} a linear and finite memory functional of
the past received data and must have the following form:

x̂rxt+1|t = ax̂rxt|t−1 + akt(zt − ẑt) = ax̂rxt|t−1 + aktzt

zt = γt (st + nt) = γt

(
x̂txt|t − x

tx
t|t−1 + nt

)
(24)

where ẑt := Eγ [zt|Zt−1] = 0 since x̂txt|t − x
tx
t|t−1 and nt are

uncorrelated and white. The optimal gain kt is to be selected, at
each step, to minimize the conditional receiver state prediction
error covariance p̂rxt+1|t := Eγ [(xt+1 − x̂rxt+1|t)

2].
This is easily achieved writing the equation for the prediction

error and differentiating w.r.t kt. Let us first derive the dynam-
ical equation for x̃rxt|t−1 = xt − x̂rxt|t−1, which is obtained by
subtracting the state prediction update Eqn. (24) from the state
equation Eqn. (1), obtaining

x̃rxt+1|t = a(1−γtkt)x̃rxt|t−1−γtakt(∆̂xt− x̃
tx
t|t +nt)+wt

where ∆x̂t := x̂rxt|t−1−x
tx
t|t−1 = x̃

tx

t|t−1 − x̃rxt|t−1 and x̃
tx

t|t−1 :=

xt − xtxt|t−1. This implies that x̃rxt|t−1 = x̃
tx

t|t−1 − ∆x̂t. Using
Lemma 2 we obtain:

Eγ [x̃rxt|t−1x̃
tx

t|t−1] = Eγ(x̃
tx

t|t−1 −∆x̂t)x̃
tx

t|t−1]

= Eγ [x̃
tx

t|t−1x̃
tx

t|t−1] =: p̂0
t

Eγ [x̃rxt|t−1∆x̂t] = Eγ [x̃rxt|t−1(x̃
tx

t|t−1 − x̃rxt|t−1)]

= −(p̂rxt|t−1 − p̂
0
t )

Eγ [∆x̂t∆x̂t] = Eγ [(x̃
tx

t|t−1 − x̃rxt|t−1)∆x̂t]

= −Eγ [x̃rxt|t−1∆x̂t] = p̂rxt|t−1 − p̂
0
t

where p̂0
t = Eγ [(xt − xtxt|t−1)2] = E[(x̃

tx

t|t−1)2]. Recalling
that Eγ [n2

t ] = 1
ΛEγ [(x̂txt|t − xtxt|t−1)2] = 1

Λ (ptxt|t − p̂0
t ), and

Eγ [x̃txt|tx̃
rx
t|t−1] = ptxt|t, then it follows that the receiver con-

ditional variance is given by:

p̂rxt+1|t= (a−γtakt)2p̂rxt|t−1+σ
2
w+

+a2γ2
t k

2
t

(
p̂rxt|t−1−(p̂0

t− ptxt|t) +
p̂0
t−p

tx
t|t

Λ

)
+

+2a2γtkt(1− γtkt)
(
p̂rxt|t−1 − (p̂0

t− ptxt|t)
) (25)

The optimal gain kt which minimizes the right had side is
found by taking the derivative w.r.t. kt

∂p̂rxt+1|t
∂kt

=−2γta
2(1−γtkt)p̂rxt|t−1+

+2a2γ2
t kt

(
p̂rxt|t−1−(p̂0

t− ptxt|t)+
(p̂0
t−p

tx
t|t)

Λ

)
+

+2a2γt(1− 2kt)(p̂
rx
t|t−1 − (p̂0

t− ptxt|t))

which, equated to zero has the unique solution

kt =
Λ

Λ + 1
. (26)

Inserting kt back into (25) we obtain:

p̂rxt+1|t = a2p̂rxt|t−1 + σ2
w − γta2(p̂0

t − ptxt|t)
Λ

1 + Λ

Taking now expectation w.r.t the loss sequence γt it follows
that the expected error covariance prxt+1|t = E

[
(x̃rxt+1|t)

2
]

is
given by

prxt+1|t = a2prxt|t−1+σ2
w−(1−ε)a2(p0

t−ptxt|t)
Λ

1+Λ
(27)

where p0
t := E

[
p̂0
t

]
.

It is interesting to observe that the gain kt in (26) is time
invariant and does not depend on the packet loss probability.
In fact kt is also the Kalman optimal gain for ε = 0. Finally,
recall that p0

t is the prediction error covariance with no packet
loss, which is given by Eqn. (16) by setting ε = 0; then

lim
t→∞

p0
t =: p0

∞ =
σ2
w + a2 Λ

1+Λp
tx
∞

1− a2

1+Λ

= pCF (0)

Note also that the limiting value ptx∞ of ptxt|t is given in equation
(7). Thus it follows that the steady state prediction error
covariance is given by:

pIF (ε) = limt→∞ prxt+1|t

=
σ2
w

1−a2 − a2(1−ε)
1−a2+Λ

(
σ2
w

1−a2 − ptx∞
)

= (1− ε)pCF (0) + ε pOL
(28)

which, remarkably, is a simple linear function of the packet
loss probability ε.

C. Performance comparison

We now want to compare the performance of the two strate-
gies in terms of the steady state prediction error covariance,
which are given by Eqn. (23) for the state forwarding and
by Eqn. (28) for the innovation forwarding, as a function of
the systems parameters a,Λ, ε, σ2

w, σ
2
v . In particular, we are

interested in finding the set Φ := {(a,Λ, ε) | pSF (ε) ≤ pIF },
i.e. the set of parameters where the SF strategy has a better
performance than the IF strategy.

Theorem 2: Consider the set Φ := {(a,Λ, ε) | pSF (ε) ≤
pIF (ε)}. Then for Λ > 0, 0 < |a| < 1, and ε < 1 we have:

Φ := {(a,Λ, ε) | ε > εc(a,Λ)}

where 0 ≤ εc < 1 which is the smallest solution of a quadratic
equation of the form

ε2 + β1(σv,Λ, a)ε+ β2(σv,Λ, a) = 0

and is monotonically decreasing in Λ and |a|, and

lim
Λ→+∞

εc(Λ, a) = lim
|a|→1−

εc(Λ, a) = 0

The critical probability εc takes the form

εc(Λ, a) =
(1−a2)(Λ+2)

2a2Λ

(√
1+

4a2Λ

(Λ + 2)2(1−a2)
−1

)
(29)

Proof: See Appendix A.
The previous theorem implies that the IF strategy performs
better then the SF strategy only for small packet loss prob-
abilities, and more specifically for ε < εc. Remarkably, the
critical probability is independent of the noise process and
measurement variances σ2

w, σ
2
v . Moreover, the critical proba-

bility decreases to zero as the system dynamics becomes less
stable, i.e. |a| increases, and as the quantization becomes finer,
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i.e. Λ increases. In particular, the previous theorem shows that
it is always better to use the SF strategy, independently of the
systems parameters, if the packet loss probability is greater
than one half, i.e. under a high packet loss probability regime.
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Fig. 4. Critical probability εc as a function of |a| for different values of the
SQNR Λ.

Figure 4 pictures the critical probability εc as a function of
|a| for different values of the SQNR Λ, which shows that such
probability is almost equal to Λ

Λ+1 up to |a| ≈ 0.8 and then
rapidly decays to zero.

V. SOFT INNOVATION FORWARDING WITH NO CHANNEL
FEEDBACK

In this section, we propose an alternative strategy under the
no channel feedback scenario, that includes the IF strategy and
the SF strategy as special cases. More precisely, we propose a
hybrid strategy, where the transmitter sends a convex combi-
nation of its best estimate of the state x̂txt|t = E[xt | T NCFt ] and
the innovation between its best estimate and the best estimate
of the state given the past quantized transmitted signals, i.e.
∆x̂t = x̂txt|t − x

tx
t|t−1 where xtxt|t−1 = E[xt | sqt−1, . . . , s

q
0] . We

call this scheme the soft innovation forwarding (SIF) scheme.
In this case, the transmitted signal is thus given by

st = νx̂txt|t + (1− ν)∆x̂t = x̂txt|t − (1− ν)xtxt|t−1 (30)

where 0 ≤ ν ≤ 1 is fixed at the transmitter. This scheme is
graphically illustrated in Fig. 3.

A. Transmitter filter design: g(T NCFt )

In this section, we explicitly compute the transmitter filter
function g(T NCFt ) based on the SIF strategy. Basically, it re-
duces to the problem of computing the equation for the internal
estimator xtxt|t−1. Since the dynamical systems is linear with
additive gaussian noise, then the optimal MMSE estimator is
linear in the quantized transmitted signals sqt and it is given by
the Kalman Filter. However, the equations are somewhat non-
standard since the variance of the quantization noise nt is not
constant but depends on the variance of the transmitted signal.
We start by defining the internal estimator error covariance
as pt|h = E[(x̃

tx

t|h)2], where x̃
tx

t|h = xt − xtxt|h. Based on this
definition, we can compute the power of the transmitted signal

st as follows:

E[s2
t ] = E[(νx̂txt|t + (1− ν)∆x̂t)

2] =
(
ν2E[(x̂txt|t)

2] +

+(1− ν)2E[∆x̂2
t ] + 2ν(1− ν)E[x̂txt|t∆x̂t]

)
= ν2

(
pOL − ptxt|t

)
+ (1− ν)2(p̄t|t−1 − ptxt|t) +

+2ν(1− ν)E[(xtxt|t−1 + ∆x̂t)∆x̂t]

= ν2
(
pOL − ptxt|t

)
+ (1− ν)2(pt|t−1 − ptxt|t) +

+2ν(1− ν)(pt|t−1 − ptxt|t)
= ν2(pOL − pt|t−1) + (pt|t−1 − ptxt|t)

Here we used the fact that xt−xtxt|t−1 = (xt−x̂txt|t)+∆x̂t where
(xt − x̂txt|t) and ∆x̂t are uncorrelated and that xt is assumed
to be in its steady state distribution. The equations of the filter
are given by:

xtxt+1|t = axtxt|t−1 + ktxt (sqt − ŝ
q
t|t−1)

ŝqt|t−1 = E[sqt | s
q
t−1, . . . , s

q
0] = νxtxt|t−1

ktxt = cov(xt, s
q
t − ŝ

q
t|t−1)V ar−1{sqt − ŝ

q
t|t−1}

=
a(pt|t−1 − ptxt|t)

pt|t−1 − ptxt|t + E[n2
t ]

where

E[n2
t ] =

1

Λ
E[s2

t ] =
1

Λ
[ν2(pOL − pt|t−1) + (pt|t−1 − ptxt|t)]

For large t such filter will reach a steady state and, therefore,
it is possible to consider its steady state implementation which
will reach the same steady state performance. The steady state
filter is given by:
xtxt+1|t = (a− νk)xtxt|t−1 + ksqt

k =
a(p− ptx∞)

(1 + 1
Λ )(p− ptx∞) + ν2

Λ (pOL − p)
, p > 0 (31)

p = a2p+σ2
w−

a2(p− ptx∞)2

(1+ 1
Λ )(p− ptx∞) + ν2

Λ (pOL − p)
(32)

where the last equation is a Riccati-like equation which has a
unique stabilizing positive solution p.

B. Receiver filter design: h(Rt)
In this section we explicitly compute the optimal state

estimator at the receiver, i.e. x̂rxt+1|t = E[xt+1 |Rt]. We assume
that the transmitter filter architecture, and in particular the value
of ν, is known at the receiver, therefore it is possible to write
the received message zt := γts

q
t = γt(x̂

tx
t|t−(1−ν)xtxt|t−1+nt)

as the output of the following dynamical system: xt+1

x̂txt+1|t+1

xtxt+1|t


︸ ︷︷ ︸

ξt+1

=

 a 0 0

ak̂ a(1− k̂) 0

0 k a− k̄


︸ ︷︷ ︸

A

 xt
x̂txt|t
xtxt|t−1


︸ ︷︷ ︸

ξt

+

+

 wt
k̂(wt + vt+1)

knt


︸ ︷︷ ︸

ηt

(33)

zt = γt
[

0 1 −(1−ν)
]︸ ︷︷ ︸

C

 xt
x̂txt|t
xtxt|t−1

+γtnt (34)
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where k̂ is the steady state Kalman filtering gain for the
transmitter state estimator x̂txt|t defined in Eqn. (8).

As a consequence the estimator x̂rxt+1|t = E[xt+1 |Rt]
corresponds of the first component of the optimal estimator
ξ̂t+1|t = E[ξt+1 |Rt] which turns out to be the optimal Kalman
filter with intermittent observations studied in [12]. Such a filter
is time-varying since the Kalman gain depends on the packet
loss sequence, however, as discussed in Section IV-A, it can be
replaced with a constant gain filter with limited performance
degradation [24]. The (suboptimal) receiver filter design is then
given by:

ξt+1|t = (A− γtKC)ξt|t−1 + γtKzt (35)

xrxt|t−1= h(Rt−1) =
[

1 0 0
]︸ ︷︷ ︸

H

ξt|t−1 (36)

K = (APCT +S)(CPCT +R)−1 (37)
P =APAT+Q−(1−ε)K(CPCT +R)KT = Ψ(P ) (38)

R = lim
t→∞

E[n2
t ] =

1

Λ
[ν2(pOL − p) + (p− ptx∞)]

Q = lim
t→∞

E[ηtη
T
t ] =

 σ2
w k̂σ2

w 0

k̂σ2
w k̂2(σ2

w + σ2
v) 0

0 0 k
2
R


S = lim

t→∞
E[ηtnt] =

 0
0

kR


The steady state Kalman gain K can therefore be obtained by
finding the unique positive definite solution P > 0 that solves
the modified algebraic Riccati equation (38) and the steady
state prediction error has the following upper bound:

lim sup
t→∞

E[(xt − x̂rxt|t−1)2] ≤ pSIF = HPHT (39)

C. Optimal soft innovation forward strategy

The transmitter and receiver filter design proposed in the
previous two sections still leave a certain degree of freedom
for optimizing the performance pSIF = p11(ε) = pSIF (ν, ε),
where p11(ε) is the (1, 1)-th element of the receiver estimation
error covariance matrix P , and where we explicitly indicate
its dependence on the parameters ν, ε. If the packet loss
probability ε is known, then one might optimize for the mixing
coefficient ν.

More specifically we define:

ν∗(ε) := arg min
ν∈[0,1]

pSIF (ν, ε) (40)

pOSIF (ε) := pSIF (ν∗, ε) (41)

where pOSIF (ε) is the optimal soft innovation forward (OSIF)
strategy for a given packet loss probability ε. It is seen via
numerical computations that pSIF (ν, ε) has a unique minimum
in the interval ν ∈ (0, 1), It is also seen that this optimal value
of ν, ν∗(ε) computed by an exhaustive search, appears to be a
monotonically increasing function of ε, which implies that as
the packet loss probability increases, it is better to place more
weight on the state and less on the innovation. Moreover, it is
seen that the SF strategy is the optimal strategy when the packet
loss probability is very close to 1. Analytically proving these
results appears to be difficult in the general noisy measurement

case. However, we are able to prove some meaningful results in
the noise-free case when σ2

v = 0, that is the sensor has access
to full-state observation. In this case, the system description
presented in (34) reduces to a 2nd-order system (since in this
case x̂txt|t = xt). The corresponding descriptions for all the
relevant parameters can be found in [19], or also by substituting
σ2
v = 0, ptx∞ = 0 in the appropriate equations. With a slight

abuse of notation, we use the same notations for this special
case to maintain readability. In this special case, we can prove
the following two theorems in this noise-free situation at the
sensor. The first of these theorems states that for a fixed ε there
is ν ∈ (0, 1) that performs better than the SF strategy (ν = 1)
and the IF strategy (ν = 0).

Theorem 3: Under the assumption σ2
v = 0, for any arbitrary

ε ∈ (0, 1), then pSIF (ν, ε) is a decreasing function of ν at
ν = 0 and an increasing function of ν at ν = 1. This implies
that pSIF (ν, ε) has at least one minimum at some 0 < ν∗ < 1.

Proof: See Appendix B.
Remark 2: It is possible to check numerically via suitable

examples that pSIF (ν, ε) may not be a convex function of ν
for a fixed ε. Therefore we do not, at this stage, attempt to
prove that pSIF (ν, ε) has a unique minimum with respect to
ν ∈ (0, 1). Instead, the above theorem simply states that there
is at least one minimum for pSIF (ν, ε) at some 0 < ν∗ < 1.
This is not to say that the minimum is not unique (in fact the
extensive numerical results indeed suggest uniqueness), but a
proof of uniqueness has proved to be elusive so far.
The second theorem states that as the packet loss probability
approaches one, then the optimal ν∗ approaches one as well,
i.e. the SF strategy becomes optimal for large packet loss
probabilities, as stated in the following theorem:

Theorem 4: Under the assumption σ2
v = 0, the optimal

mixing parameter ν∗(ε) has the following properties:

ν∗(0) = 0, lim
ε→1−

ν∗(ε) = 1

Proof: See Appendix C.

VI. NUMERICAL RESULTS

We first illustrate the accuracy of our additive white noise
model for the quantization noise. We use a uniform quantizer
to quantize st given by (30) with a suitable number of
quantization levels and saturation thresholds so as to guarantee
a SNR equal to Λ. The quantization step ∆Q is chosen so

that the equivalent additive noise variance is σ2
n =

∆2
Q

12 , where
σ2
n = V ar{st}

Λ . These latter two expressions combined yield

∆Q =
√

12V ar{st}
Λ . By setting the saturation thresholds ±TQ

according to TQ = 4
√
V ar{st}, the number of quantization

levels is given by N =
⌈

2TQ
∆Q

⌉
=

⌈
8
√
V ar{st}√

12V ar{st}
Λ

⌉
=
⌈
4
√

Λ
3

⌉
,

which corresponds to Nb =
⌈
log2

(⌈
4
√

Λ
3

⌉)⌉
bits/sample.

We consider now Nb = 3 which corresponds to Λ = 12. We
use a = 0.95 and the set the packet loss probability equal to
ε = 0.3. The sample estimation error variance (at the receiver
using the soft innovation strategy) and the theoretical variance
using the additive white Gaussian noise (AWGN) model are
depicted in Figure 5. It can be seen easily that the AWGN
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Fig. 5. Sample estimation error variance with uniform quantizer vs. theoretical
error variance with AWGN model (3 bits/sample)

model provides a highly accurate approximation, in fact a very
good one for Nb ≥ 2.

For the rest of the numerical results we use the parameter
values a = 0.95, Λ = 3 (2 bits per sample), σ2

w = 0.1, σ2
v =

0.05. Figure 6 depicts the estimation error performance (nor-
malized by the maximum value pOL at ε = 1) of the
filters derived so far and the critical probability εc defined in
Eqn. (29). As expected, the performance degrades as the packet
loss probability increases for all estimators, but the estimator
with channel feedback outperforms all estimators with no
channel feedback. The figure also shows that by optimizing
ν, the OSIF performs considerably better than the SF and IF
strategies, which are just two special cases in the class of the
SIF strategies.
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Fig. 6. Prediction error covariance of proposed strategies against packet loss
probability ε for a = 0.95,Λ = 3, σ2

w = 0.1, σ2
v = 0.05.

In Figure 7 below, we plot the optimal mixing coefficient
ν = ν∗ which has been obtained numerically via an exhaustive
search. The curve appears to be monotonically increasing from
zero to unity, thus confirming that as the packet loss increases,
the optimal soft innovation forwarding strategy transits from
the IF to the SF strategy.

VII. DISCUSSIONS AND FUTURE WORK

In this section we briefly indicate the limitations of the
current work and how these results can be generalized in
various directions.

Unstable Systems: Suppose one considers an unstable sys-
tem. Then it is not possible to consider an uncontrolled
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Fig. 7. Optimal mixing coefficient ν∗ as a function of the packet loss prob-
ability ε for the OSIF strategy for a = 0.95,Λ = 3, σ2

w = 0.1, σ2
v = 0.05.

unstable system at the transmitter since regardless of the
coder/decoder scheme employed, the power of the signal to
be transmitted will grow unbounded. If we were to consider
a controlled unstable system, where the control action is
determined by the receiver, then the very same model of the
system will be different from the one used in this manuscript
and it is not obvious how the results obtained here can be
extended. Recently some of the authors of this paper have
looked at the case of controlled unstable systems when no pre-
processing is done at the sensor [10], [11]. These two works
are complementary and future work will focus on combining
these ideas with the current work.

Higher-order and MIMO systems: As for the case of multi-
variable systems, the problem is even harder. Suppose in fact
that in the scenario with channel feedback we still want to
use the same idea of sending the innovation. Even if the
dynamical system has a vector state but a scalar output, as soon
as two consecutive packets are lost followed by a successful
transmission, the innovation that the transmitter has to send is
two-dimensional, i.e. two real valued numbers are required to
be transmitted across the same scalar channel for the receiver to
recover the current estimate when the packet is received. This
gives rise to the problem of properly modeling the quantization
error when the same number of bits per second are to be sent
across the channel, yet two real numbers are to be encoded.
Another alternative is to use lattice vector quantization with
the same additive white noise quantization model, as used
in [22]. This will require the use of a vector channel, and
perhaps the use of a vector parameter ν for the soft innovation
forwarding with no channel feedback case. Needless to say,
the corresponding analysis for the no feedback case will be
considerably more difficult if not intractable.

Imperfect feedback channels: In this paper we study the
cases of perfect packet acknowledgement feedback or no
feedback. A more practical scenario in between these two
extreme cases is where the transmitter receives packet ac-
knowledgement but over an imperfect channel, such that the
ACK/NACK packets can be also lost with a certain probability.
Note that this particular issue has been investigated in a slightly
different problem setting in [25]. In this paper, the problem of
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whether to send a state estimate or the innovation is formulated
as a Markov decision problem (MDP) where a long term
average estimation error (at the receiver) is minimized. In the
case of imperfect ACK/NACK, the problem becomes a par-
tially observed Markov decision problem (POMDP) problem
which can be solved using information state techniques that
convert the problem to a fully observed MDP problem. This is
computationally expensive but suboptimal solutions based on
an estimate of the receiver estimation error covariance at the
transmitter can be designed in the case of imperfect channel
feedback.

Delays: In this work we considered a scenario with a
channel delay smaller or equal to the time step. If the delay
is larger than unity, the strategies suggested in this work with
no channel feedback are still valid since the only difference
is that the estimator has to provide the open loop d-time
step ahead prediction to reconstruct x̂rxt|t−d := E[xt|Rs] =

Eγ [xt|Zt−d] = adx̂rxt−d|t−d. However, the results presented
in the channel feedback scenario cannot be directly extended
since the transmitter requires to know the packet loss sequence
with a delay smaller or equal to unity in order to make a perfect
copy of the receiver estimator. Therefore alternative strategies
are not obvious for d > 1.

VIII. CONCLUSIONS

In this work we studied the problem of remotely estimating
the state of a dynamical stable system based on noisy measure-
ments over a communication channel subject to packet loss and
quantization. We showed that with perfect channel feedback it
is possible to derive the optimal linear transmitter and receiver
filters to minimize the estimation error variance using a strategy
that it is reminiscent of DPCM. We also studied the scenario
with no channel feedback and we proposed a few heuristic
strategies for which we were able to characterize performance
and trade-offs.
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APPENDIX

A. Proof of Theorem 2

Without loss of generality we can set σ2
w = 1, since it simply

scales the error covariance and therefore it does not affect the
set Φ. Let us define ∆p(a,Λ, ε) = pSF (ε) − pIF (ε), where
we also make explicit the dependence of the performance
in terms of the parameters. It is straightforward to observe
that ∆p(a,Λ, 1) = 0 and ∆p(a,Λ, 0) > 0. Therefore, if we
can show that there exists a unique εc ∈ (0, 1) such that
∆p(a,Λ, εc) = 0, then this implies that pSF (ε) ≤ pIF (ε) for
ε ≥ εc. We now show that this is the case. If ∆p(a,Λ, εc) = 0,
then pSF (ε)(εc) = pIF (εc) = p∗. The points p that satisfy this
equality must also satisfy Eqn. (23) and Eqn. (28), therefore,
if we take the difference and recalling that a 6= 0 and ε 6= 1
we have:

(p∗ − ptx∞)2

(p∗ − ptx∞) + 1
Λ (pOL − ptx∞)

=
Λ(1− a2)

1− a2 + Λ
(pOL − ptx∞)

From Eqn. (28) it follows that

p∗ − ptx∞ =

(
1− a2Λ(1− ε)

1− a2 + Λ

)
(pOL − ptx∞)

If we substitute this equation into the previous expression and
after some manipulations, which are valid for a 6= 0 and Λ 6= 0,
we get:

a2Λε2 + (1− a2)(Λ + 2)ε− (1− a2) = 0

from which it follows that the only positive feasible solution
for εc is given by Eqn. (29).

We can now study the dependence of εc in terms of the
parameters Λ and a. By rearranging the different terms, we
have

(a2ε+ 1− a2)ε+
1

Λ
(1− a2)(2ε− 1) = 0
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from which it follows via root-locus analysis that for fixed a,
εc(Λ, a) is a monotonically decreasing function of Λ where

lim
Λ→0+

εc(Λ, a) =
1

2
, lim

Λ→+∞
εc(Λ, a) = 0

Similarly, by defining η = a2

1−a2 which is a strictly monoton-
ically increasing function of a2 where η ∈ (0,+∞), and by
rearranging terms we get:

Λε2 +
1

η
((Λ + 2)ε− 1) = 0

from which it follows via root-locus analysis that, for fixed Λ,
εc(Λ, a) is a monotonically decreasing function of a2 where

lim
|a|→0+

εc(Λ, a) =
1

2 + Λ
, lim
|a|→1−

εc(Λ, a) = 0

From this analysis, it follows that

εc(Λ, a) <
1

2
, ∀|a| ∈ (0, 1),Λ ∈ (0,+∞)

which concludes the proof.

B. Proof of Theorem 3

In the noise-free case, where the state is fully observed at
the sensor, we have a two-dimensional state vector as discussed
before. In this case, the expression for the covariance matrix
P can be computed from three paired nonlinear equations as

shown below (42). Let us denote P =

[
p11(ε) p12(ε)
p12(ε) p22(ε)

]
,

where we have explicitly indicated that P is symmetric and
its elements depend on ε. Although we will be primarily
interested in the behaviour of p11(ε) = pSIF with respect
to ν, the properties of p12(ε), p22(ε) will also be useful. In
the case when ε = 0 (i.e, there is no packet loss), it is easy to
check that p11(0) satisfies the same equation as the steady-state
transmitter Kalman predictor error covariance given by p, and
is clearly minimum when ν = 0. Also, p12(0) = p22(0) = 0.

It can be shown after some algebraic manipulation that the
elements of P satisfy the following equations:

p11(ε) =
σ2
w

1−a2
− a2

1−a2

(1−ε)
M∞(ν)

(p11(ε)−(1−ν)p12(ε))
2

p12(ε) =
ak

1− a2 + ak
p11(ε)−

a(1− ε)
1− a2 + ak

(p11(ε)− (1− ν)p12(ε))
L∞(ν)

M∞(ν)

p22(ε) =
k

2

1−(a−k)2
p11(ε)+

2k(a−k)

1−(a−k)2
p12(ε)

+
k

2

1− (a− k)2
R− (1− ε)

1− (a− k)2

L2
∞(ν)

M∞(ν)
(42)

where

M∞(ν) = p11(ε)− 2p12(ε)(1− ν) + p22(ε)(1− ν)2 +R,

L∞(ν) = kp11(ε) +
(
a− k(2− ν)

)
p12(ε)−

−(a− k)(1− ν)p22(ε) + kR

Recall that p11(ε) = pSIF (ν, ε). Hence we will use p11(ε)
to indicate pSIF (ν, ε) in the following proof. The proof is

divided into two parts: (i) showing that ∂p11(ε)
∂ν |ν=1

> 0 and

(ii) ∂p11(ε)
∂ν |ν=0

< 0.
(i) For simplicity, we will drop the dependence on the

argument ε in this part, and make the observation that all values
of p11, p12 etc. are evaluated at ν = 1 in the expression of the
partial derivative ∂p11(ε)

∂ν |ν=1
. Recall also that pOL =

σ2
w

1−a2 .
Using the equation for p11 from (42), and taking partial

derivatives, we have (after some algebra):

∂p11(ε)

∂ν |ν=1

[
1+

a2(1−ε)p11

(1−a2)(p11+ pOL

Λ )

(
2− p11

(p11+ pOL

Λ )

)]

=
2a2

1−a2
(1− ε) p11p

OL

Λ(p11+ pOL

Λ )2

[
p11(1− p

pOL
)−p12

]
It is easy to check that the expression in the square brackets

on the left had side of the previous equation is positive. All
that remains to show therefore is that p12 < p11(1 − p

pOL
).

To this end, note that from the equation for p12 from (42),
it follows that (recall that all values are evaluated at ν = 1),
p12 <

ak
1−a2+ak

p11. It can be shown that for all 0 ≤ ν < 1
(see Proof of Theorem 4 below)

ak

1− a(a− k)
=

a2P̄∞
P̄∞ + J(ν)(1− a2)

= (1− P̄∞),

where P̄∞ = p
pOL

. Hence it follows that p12 < p11(1− P̄∞) =

p11(1− p
pOL

). This implies that ∂p11(ε)
∂ν |ν=1

> 0.

(ii) The proof of this part relies on using a state trans-

formation technique. Denote a new state vector
[
xat+1

xbt+1

]
=

T

[
xt+1

x̂txt+1|t

]
, where T =

[
1 0
1 −(1− ν)

]
. It can be easily

checked that xat = xt and xbt = st. Using this transformation,
we can write a new state space system as[

xt+1

st+1

]
=Ā1

[
xt
st

]
+T

[
wt
knt

]
, zt=γtC̄1

[
xt
st

]
+γtnt (43)

where

Ā1 = TAT−1 =

[
a 0

νk (a− k)

]
C̄1 = C̄T−1 = [0 1] .

It is straightforward to show that for this transformed state
space system, one can derive a similar suboptimal constant
gain Kalman filter which has a steady state stabilizing solution
P̃ (ε) whose elements pij(ε), i = 1, 2, j = 1, 2 satisfy the
following equations:

p̃11(ε) =
σ2
w

1− a2
− a2(1− ε)

1− a2

p̃2
12(ε)

p̃22(ε) +R

p̃12(ε) =
1

1−a(a−k)

[
aνkp̃11(ε)+σ2

w−
(1− ε)ap̃12(ε)

p̃22(ε)+R
V̄ (ν)

]
p̃22(ε) =

1

1− (a− k)2

[
ν2k

2
p̃11(ε) + 2νk(a− k)p̃12(ε) + σ2

w

+(1− ν)2k
2
R− (1− ε) F 2

∞(ν)

p̃22(ε) +R

]
(44)

where V̄ (ν) := νkp̃12(ε) + (a − k)p̃22(ε) − (1 − ν)kR for
notational simplicity.
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First, it is useful to observe a few facts regarding the steady
state stabilizing solution P̃ and its relationship with P . One
can easily verify that p̃11(ε) = p11(ε), p̃12(ε) = p11(ε)− (1−
ν)p12(ε) and p̃22(ε) = p11(ε)−2(1−ν)p12(ε)+(1−ν)2p22(ε).
Also, when ν = 0, the state space description (43) implies that
the receiver only receives the transmitter innovation sequence
in the presence of white Gaussian noise nt when a packet is
received. However, since the transmitter innovation sequence
is also a zero mean i.i.d. Gaussian sequence, whether a packet
is received or not, the minimum mean square estimate of the
state st is simply its mean, which is zero. Therefore, the corre-
sponding estimation error p̃22(ε)|ν=0 = p∞(0), where p∞(0)
is the variance of the transmitter innovation sequence when
ν = 0, which can be obtained from (32) by substituting ν = 0,
as σ2

w

1− a2

Λ+1

. Indeed, this can be also verified by solving the

corresponding quadratic equation for p̃22(ε) after substituting
ν = 0. Similarly, it can be checked that p̃12(ε)|ν=0 = p∞(0)
as well.

In what follows, we will be dropping the dependence on
ε of the relevant quantities to keep things simple. Also, all
values of the relevant quantities are computed at ν = 0 unless
otherwise specifically indicated. Using the equations in (44),
one can show the following facts:

∂p̃11

∂ν

∣∣∣∣
ν=0

= −a
2(1−ε)
1−a2

1

(1+ 1
Λ )2

(
2(1+

1

Λ
)
∂p̃12

∂ν
− ∂p̃22

∂ν

)∣∣∣∣
ν=0

One can also easily show the following rather simple but useful
result which states that ∂p̃22

∂ν |ν=0
= 0 regardless of the value of

ε. Therefore, we only need to show that ∂p̃12

∂ν |ν=0
> 0 ∀ε > 0.

Note that at ε = 0, we have p̃11(0) = p11(0) = p∞(0) and
therefore ∂p11

∂ν |ν=0
= 0 and hence ∂p̃12

∂ν |ν=0
= 0 also at ε = 0.

Using the above facts, from (44), one can evaluate (after some
algebra) that for ε > 0,[

1 +
a2(1− ε)Λ

(1− a2

Λ+1 )(Λ + 1)2

]
∂p̃12

∂ν |ν=0

=
a2ε p∞(0)

1 + 1
Λ

(45)

which is clearly positive for ε > 0. Hence we have ∂p̃11

∂ν |ν=0
<

0 for ε > 0. Therefore p̃11(ε) = p11(ε) = pSIF (ν, ε) is a
decreasing function of ν at ν = 0 for ε > 0.

C. Proof of Theorem 4

The proof of the first part of the theorem that ν∗(0) = 0
is obvious. In order to prove the second part, we first obtain
an O(δ) approximation of p11(1 − δ), where δ = 1 − ε ≈ 0
and then show that this approximation is minimized at ν∗ =
1. Using the expression for p11(ε) from (42), one can (after
some elementary analysis) show that an O(δ) approximation
for p11(1− δ) can be obtained as

p11(1− δ) ≈ σ2
w

1−a2
−δ a2

1−a2
(p11(1)−(1−ν)p12(1))

2 ×

× 1

p11(1)−2p12(1)(1−ν)+p22(1)(1−ν)2+R
(46)

One can easily obtain the values of p11(ε), p12(ε) and p22(ε)

at ε = 1 or δ = 0 as p11(1) =
σ2
w

1−a2 = pOL, p12(1) =

pOL ak
1−a2+ak

and

p22(1)=pOL

[
k

2

1−(a−k)2
(1+J(ν))+

2k
2
a(a−k)

(1−(a−k)2)(1−a2+ak)

]
where J(ν) = R

pOL
= 1

Λ (ν2 + (1− ν2) p
pOL

).
Substituting these expressions into (46), one can then show

that the task of minimizing the O(δ) approximation of p11(ε)
is equivalent to maximizing a function Ū(ν) of ν given by
Ū(ν) = F 2(ν)

G(ν) , where F (ν) = 1− (1−ν)ak

(1−a2+ak)
and

G(ν) = 1− 2ak

(1−a2+ak)
(1−ν)+

(1−ν)2k
2

1−(a−k)2
(1+J(ν))+

+
(1− ν)22k

2
a(a− k)(

1− (a− k)2
) (

1− a2 + ak
) + J(ν)

Numerical examples seem to indicate that Ū(ν) is an increasing
function of ν for 0 ≤ ν < 1. However, it seems to be rather
tedious to prove this. We use a different technique by bounding
Ū(ν) from above and showing that this upper bound is an
increasing function for 0 ≤ ν < 1, and finally show that the
upper bound is tight at ν = 1. Note the expressions for F (ν)

and G(ν) and that Ū(ν) = F 2(ν)
G(ν) . By completing a square in

G(ν), it can be easily shown that Ū(ν) ≤ 1

1+
R̄(ν)

F2(ν)

, where

R̄(ν)=
(1−a2)(1−ν)2k

2(
1−(a−k)2

) (
1−a(a−k)

)+

(
1+

(1−ν)2k
2

1−(a−k)2

)
J(ν)

Denoting P̄∞ = p
pOL

and noting that p < pOL =
σ2
w

(1−a2) for
0 ≤ ν < 1 for all 0 ≤ ε < 1, we have P̄∞ < 1. After a little
algebra, it can be also shown that P̄∞ satisfies P̄∞+J(ν)(1−
a2) = a2P̄∞

(1−P̄∞)
. Finally, using k = aP̄∞

P̄∞+J(ν)
, one can derive

that
ak

1− a(a− k)
=

a2P̄∞
P̄∞ + J(ν)(1− a2)

= (1− P̄∞).

Substituting the above equality in the expression for R̄(ν),
one can immediately derive that R(ν)

F 2(ν) ≥ J(ν)
F 2(ν) and

Ū(ν) ≤ 1

1+
J(ν)

F2(ν)

. We will now show that this upper bound

is an increasing function of ν by showing that J(ν)
F 2(ν) is a

decreasing function of ν. Here we will omit the details, but will
provide the key ingredients. We will need to use the fact that
dP̄∞
dν

[
2P̄∞(1 + 1−ν2

Λ (1− a2)) + (1− a2)
(

2ν2

Λ − (1 + 1
Λ

)]
=

2ν
Λ (1 − a2)(1 − P̄∞)2. Using this one can show that J(ν)

F 2(ν)

is a decreasing function of ν by dividing the range of P̄∞
into two intervals: 0 < P̄∞ < ν

1+ν and ν
1+ν ≤ P̄∞ < 1 and

proving the derivative of J(ν)
F 2(ν) with respect to ν is negative

separately for both intervals.
The next step is to verify that S(1) = 1

1+
J(1)

F2(1)

= 1
1+ 1

Λ

, that

is the bound is tight for ν = 1. Therefore we have Ū(ν) ≤
1

1+
J(ν)

F2(ν)

≤ 1
1+ 1

Λ

= Ū(1) for 0 ≤ ν ≤ 1. This implies that an

O(1 − ε) approximation of p11(ε) = pSIF (ν, ε) is minimized
at ν∗ = 1 when ε → 1 from below. Since pSIF (ν, ε) is a
continuous function of ε, we can say that for ε sufficiently
close to but less than 1, pSIF (ν, ε) is minimized at ν∗ = 1.
Hence the proof of Theorem 4 follows.


